The 6th International Symposium on Backward Stochastic Differential Equations Title and Talk
نویسندگان
چکیده
Erhan Bayraktar University of Michigan Probabilistic Perron's method and verification without smoothness using viscosity comparison: the linear case We introduce a probabilistic version of the classical Perron's method to construct viscosity solutions to linear parabolic equations associated to stochastic differential equations. Using this method, we construct easily two viscosity (sub and super) solutions that squeeze in between the expected payoff. If a comparison result holds true, then there exists a unique viscosity solution which is a martingale along the solutions of the stochastic differential equation. The unique viscosity solution is actually equal to the expected payoff. This amounts to a verification result (Ito's Lemma) for non-smooth viscosity solutions of the linear parabolic equation. This is the first step in a larger program to prove verification for viscosity solutions and the Dynamic Programming Principle for stochastic control problems and games. This is a joint work with Mihai Sirbu.
منابع مشابه
Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type
This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...
متن کاملTitle of Talk: High accurate schemes for FBSDEs with jumps
In this talk, we will introduce high accurate numerical schemes for solving forward backward stochastic differential equations (FBSDEs) with jumps. In these schemes, the simplest Euler scheme with only one jump is used to solve the forward stochastic differential equation (SDE), and multistep schemes is used to solve the backward stochastic differential equation (BSDE) with high convergence rat...
متن کاملStudy on efficiency of the Adomian decomposition method for stochastic differential equations
Many time-varying phenomena of various fields in science and engineering can be modeled as a stochastic differential equations, so investigation of conditions for existence of solution and obtain the analytical and numerical solutions of them are important. In this paper, the Adomian decomposition method for solution of the stochastic differential equations are improved. Uniqueness and converg...
متن کاملComputational method based on triangular operational matrices for solving nonlinear stochastic differential equations
In this article, a new numerical method based on triangular functions for solving nonlinear stochastic differential equations is presented. For this, the stochastic operational matrix of triangular functions for It^{o} integral are determined. Computation of presented method is very simple and attractive. In addition, convergence analysis and numerical examples that illustrate accuracy and eff...
متن کاملStochastic differential equations and integrating factor
The aim of this paper is the analytical solutions the family of rst-order nonlinear stochastic differentialequations. We dene an integrating factor for the large class of special nonlinear stochasticdierential equations. With multiply both sides with the integrating factor, we introduce a deterministicdierential equation. The results showed the accuracy of the present work.
متن کامل